COMMENTS

Comment on "Marcus Inverted Region in the Photoinduced Electron Transfer Reactions of Ruthenium(II)–Polypyridine Complexes with Phenolate Ions"

Cang Li and Morton Z. Hoffman*

Department of Chemistry, Boston University, Boston, Massachusetts 02215

Received: December 1, 1997

In a recent paper in this journal, Thanasekaran et al.¹ reported on the observation of the Marcus inverted region in the reductive quenching of the MLCT excited states of Ru(II)-diimine complexes by phenolate ions in aqueous solution. Although inverted Marcus behavior is well established in intramolecular electron transfer,² there are very few unequivocal examples in intermolecular systems.³

The assignment of inverted Marcus behavior by Thanasekaran et al.¹ rests entirely on their values of k_{q} for the quenching of *Ru(bpz)₃²⁺ (bpz = 2,2'-bipyrazine) by the phenolate ions. In Figure 5 of the paper, which shows a plot of log k_q vs $-\Delta G^{\circ}$ for quenching by PhO- (phenolate ion), five points (for *Ru- $(bpy)_{3^{2+}}$ (bpy = 2,2'-bipyridine), *Ru(bpm)_{3^{2+}} (bpm = 2,2'bipyrimidine), $*Ru(dmbpy)_3^{2+}$ (dmbpy = 4,4'-dimethyl-2,2'bipyridine), $*Ru(phen)_3^{2+}$ (phen = 1,10-phenanthroline), and *Ru(dpp)₃²⁺ (dpp = 2,3-bis[2-pyridyl]pyrazine)) exhibit an increase in k_q with increasing exoergicity (normal Marcus behavior); the point for $*Ru(bpz)_3^{2+}$ dramatically breaks this trend. Indeed, the data in Table 2 of the paper show the same trends for 4-methylphenolate ion (4-CH₃PhO⁻), 4-methoxyphenolate ion (4-CH₃OPhO⁻), and 2,6-dimethylphenolate ion. In all the cases, the data for $*Ru(bpz)_3^{2+}$ do not fall on the anticipated Rehm-Weller plot with k_q approaching the diffusion-controlled limit as ΔG° becomes more negative.⁴

In the course of our examination of ground- and excitedstate interactions between Ru(II)-dimine complexes and phenols,⁵ we determined k_q for the reductive quenching of *Ru(bpy)₃²⁺, *Ru(phen)₃²⁺, *Ru(bpz)₂²⁺, *Ru(bpz)₂(bpm)²⁺, *Ru(bpz)₂(bpy)²⁺, *Ru(bpm)₂(bpz)²⁺, and *Ru(bpz)(bpm)-

Figure 1. Plot of log k_q vs $-\Delta G^{\circ}$ for the reductive quenching of *Ru-(II) complexes by phenolate ions in Ar-purged aqueous solutions at pH 12.0 and 20 °C ($\mu = 0.05$ with Na₂SO₄): *Ru(bpy)₃²⁺ (\bigcirc), *Ru-(phen)₃²⁺ (\square), *Ru(bpz)₃²⁺ (\spadesuit), *Ru(bpz)₂(bpm)²⁺ (\blacktriangle), *Ru(bpz)₂-(bpy)²⁺ (\blacklozenge), *Ru(bpm)₂(bpz)²⁺ (\blacksquare), *Ru(bpz)(bpm)(bpy)²⁺ (\triangle).

 $(bpy)^{2+}$ by PhO⁻ and for *Ru(bpz)₃²⁺ by a large number of chlorophenolate and para-substituted phenolate ions at pH 12.0 as a function of temperature.⁶ To evaluate the driving forces of the quenching reactions, we determined the standard oxidation potentials (E_{ox}^{o}) for the phenolate ions in aqueous solution⁷ by use of the electrochemical technique of Andrieux and Saveant.⁸ Values of the excited-state reduction potentials (* E_{red}^{o}) of the bpy, bpz, and bpm complexes in aqueous solution were taken from the literature;⁹ the potential of Ru(phen)₃²⁺ is virtually the same as that for Ru(bpy)₃²⁺.¹⁰

Table 1 shows our data; a direct comparison can be made with those of Thanasekaran et al.¹ for the same systems. We are surprised to find that our value of k_q for the *Ru(bpz)₃²⁺-PhO⁻ system is almost 40 times higher than that of Thanasekaran et al.¹ Further, although our value of k_q for *Ru(bpy)₃²⁺-PhO⁻ is virtually identical to that reported by Miedlar and Das,¹¹ it is a factor of 2 lower than that of Thanasekaran et al.¹ Moreover, our values for *Ru(bpz)₃²⁺ with 4-CH₃PhO⁻ and 4-CH₃OPhO⁻ are about an order of magnitude higher. These

TABLE 1: k_q (10 ⁹ M ⁻¹ s ⁻¹) and ΔG° (eV)	Values for the Reduc	tive Quenching of *Ru(II) Complexes by	Phenolate Ions in
Aqueous Solution at pH 12.0 and 20 $^\circ\mathrm{C}$ (μ	= 0.05 M with Na ₂ S	$(\mathbf{D}_4)^a$		

phenolate ion	Ru(yyy) ²⁺ (0.93 V) ^c		Ru(nnn) ²⁺ (0.94 V) ^c		Ru(zzz) ²⁺ (1.68 V) ^c		Ru(zzm) ²⁺ (1.63 V) ^c		Ru(zzy) ²⁺ (1.44 V) ^c		Ru(mmz) ²⁺ (1.43 V) ^c		Ru(zmy) ²⁺ (1.33 V) ^c	
substituent ^b	$-\Delta G^{\circ}$	kq	$-\Delta G^{\circ}$	kq	$-\Delta G^{\circ}$	kq	$-\Delta G^{\circ}$	kq	$-\Delta G^{\circ}$	k_{q}	$-\Delta G^{\circ}$	$k_{\rm q}$	$-\Delta G^{\circ}$	$k_{\rm q}$
H (-0.86 V)	0.07	0.11	0.08	0.56	0.82	5.9	0.77	5.0	0.58	4.4	0.57	4.6	0.47	0.43
4-CH ₃ (-0.71 V)					0.97	4.1								
4-CH ₃ O (-0.58 V)					1.10	6.0								
4-C ₂ H ₅ O (-0.56 V)					1.12	5.2								
4-CN (-1.14 V)					0.54	5.9								
4-CHO (-1.14 V)					0.54	5.5								
4-Cl (-0.85 V)					0.83	5.8								
pentachloro (-0.99 V)					0.69	4.0								
$4-C_{2}H_{5}(-0.71 \text{ V})$					0.97	5.4								

^{*a*} Abbreviations for the ligands: b = bpy; n = phen; z = bpz; m = bpm. ^{*b*} Values in parentheses are the oxidation potentials (vs NHE) of the phenolate ions in aqueous solution. ^{*c*} Excited-state reduction potential (vs NHE) in aqueous solution.

differences in the data cannot be reconciled by differences in the temperatures and ionic strengths of the measurements. Table 1 also shows our values of k_q for the other excited complexes with PhO⁻ and for *Ru(bpz)₃²⁺ with phenolate ions that cover a wide range of ΔG° ; the values of k_q for the latter systems average (5.3 ± 0.7) × 10⁹ M⁻¹ s⁻¹. A plot of log k_q vs $-\Delta G^{\circ}$ is given in Figure 1, which clearly shows Rehm–Weller behavior.

We do not know the origin of the disparity between our data and those of Thanasekaran et al.;¹ it is well established that values of k_q can be easily reproduced as long as great care is taken to control the temperature and the nature of the solution medium.¹² Nevertheless, we are forced to conclude from the evidence on hand that the report by Thanasekaran et al.¹ cannot be taken as an experimental observation of the Marcus inverted region in bimolecular quenching reactions at the present time.

Acknowledgment. This research was supported by the Division of Chemical Sciences, Department of Energy.

References and Notes

(1) Thanasekaran, P.; Rajendra, T.; Rojagopal, S.; Srinivasan, C.; Ramaraj, R.; Ramamurthy, P.; Venkatachalapathy, B. J. Phys. Chem. A **1997**, 101, 8195.

(2) Chanon, M.; Fox, M. A. *Photoinduced Electron Transfer*; Elsevier: New York, 1988.

(3) Turró, C.; Zaleski, J. M.; Karabatsos, Y. M.; Nocera, D. G. J. Am. Chem. Soc. **1996**, 118, 6060.

(4) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.

(5) (a) Li, C.; Sun, H.; Hoffman, M. Z. J. Photochem. Photobiol. A: Chem. **1997**, 108, 129. (b) Li, C.; Hoffman, M. Z.; Pizzocaro, C.; Mailhot, G.; Bolte, M. Inorg. Chem., in press. (c) Li, C.; Hoffman, M. Z.; Pizzocaro, C.; Mailhot, G.; Bolte, M. J. Phys. Chem., submitted for publication.

(6) The observed first-order rate constants (k_{obs}) for the decay of the luminescence from the excited states of the complexes in the absence and presence of the phenolate ions (≤ 20 mM) were determined from the pulsed laser excitation ($\lambda = 532$ nm) of Ar-purged solutions at pH 12.0 ($\mu = 0.05$ M with Na₂SO₄) with temperature control to ± 0.1 °C. Values of k_q were obtained from the slope of the excellent linear plots of k_{obs} vs [quencher].

(7) Li, C.; Hoffman, M. Z. J. Phys. Chem., submitted for publication.

(8) Andrieux, C. P.; Saveant, J. M. In *Investigation of Rates and Mechanisms of Reactions*; Bernasconi, C. F., Ed.; Wiley: New York, 1986; Vol. VI/4E, Part 2, pp 305–390.

(9) Sun, H.; Hoffman, M. Z.; Mulazzani, Q. G. Res. Chem. Intermed. 1994, 20, 735.

(10) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: New York, 1992.

(11) Miedlar, K.; Das, P. K. J. Am. Chem. Soc. 1982, 104, 7462.

(12) Hoffman, M. Z.; Moggi, L.; Bolletta, F.; Hug, G. L. J. Phys. Chem. Ref. Data 1989, 18, 219.